Kubernetes学习手札-Pod详解
5.1 Pod介绍
5.1.1 Pod结构
每个Pod中都可以包含一个或者多个容器,这些容器可以分为两类:
- 用户程序所在的容器,数量可多可少
-
Pause容器,这是每个Pod都会有的一个根容器,它的作用有两个:
- 可以以它为依据,评估整个Pod的健康状态
-
可以在根容器上设置Ip地址,其它容器都此Ip(Pod IP),以实现Pod内部的网路通信
这里是Pod内部的通讯,Pod的之间的通讯采用虚拟二层网络技术来实现,我们当前环境用的是Flannel
5.1.2 Pod定义
下面是Pod的资源清单:
测试:
在kubernetes中基本所有资源的一级属性都是一样的,主要包含5部分:
apiVersion <string>
版本,由kubernetes内部定义,版本号必须可以用 kubectl api-versions 查询到kind <string>
类型,由kubernetes内部定义,版本号必须可以用 kubectl api-resources 查询到metadata <Object>
元数据,主要是资源标识和说明,常用的有name、namespace、labels等spec <Object>
描述,这是配置中最重要的一部分,里面是对各种资源配置的详细描述status <Object>
状态信息,里面的内容不需要定义,由kubernetes自动生成
在上面的属性中,spec是接下来研究的重点,继续看下它的常见子属性:
containers <[]Object>
容器列表,用于定义容器的详细信息nodeName <String>
根据nodeName的值将pod调度到指定的Node节点上nodeSelector <map[]>
根据NodeSelector中定义的信息选择将该Pod调度到包含这些label的Node 上hostNetwork <boolean>
是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络volumes <[]Object>
存储卷,用于定义Pod上面挂在的存储信息restartPolicy <string>
重启策略,表示Pod在遇到故障的时候的处理策略
5.2 Pod配置
本小节主要来研究pod.spec.containers
属性,这也是pod配置中最为关键的一项配置。
5.2.1 基本配置
创建pod-base.yaml
文件,内容如下:
上面定义了一个比较简单Pod的配置,里面有两个容器:
- nginx:用1.17.1版本的nginx镜像创建,(nginx是一个轻量级web容器)
- busybox:用1.30版本的busybox镜像创建,(busybox是一个小巧的linux命令集合)
5.2.2 镜像拉取
创建pod-imagepullpolicy.yaml
文件,内容如下:
imagePullPolicy,用于设置镜像拉取策略,kubernetes支持配置三种拉取策略:
- Always:总是从远程仓库拉取镜像(一直远程下载)
- IfNotPresent:本地有则使用本地镜像,本地没有则从远程仓库拉取镜像(本地有就本地 本地没远程下载)
- Never:只使用本地镜像,从不去远程仓库拉取,本地没有就报错 (一直使用本地)
默认值说明:
如果镜像tag为具体版本号, 默认策略是:IfNotPresent
如果镜像tag为:latest(最终版本) ,默认策略是always
5.2.3 启动命令
在前面的案例中,一直有一个问题没有解决,就是的busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?
原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。
创建pod-command.yaml
文件,内容如下:
command,用于在pod中的容器初始化完毕之后运行一个命令。
稍微解释下上面命令的意思:
“/bin/sh”,”-c”, 使用sh执行命令
touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件
while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间
特别说明:
通过上面发现command已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个args选项,用于传递参数呢?这其实跟docker有点关系,kubernetes中的command、args两项其实是实现覆盖Dockerfile中ENTRYPOINT的功能。
1 如果command和args均没有写,那么用Dockerfile的配置。
2 如果command写了,但args没有写,那么Dockerfile默认的配置会被忽略,执行输入的command
3 如果command没写,但args写了,那么Dockerfile中配置的ENTRYPOINT的命令会被执行,使用当前args的参数
4 如果command和args都写了,那么Dockerfile的配置被忽略,执行command并追加上args参数
5.2.4 环境变量
创建pod-env.yaml
文件,内容如下:
env,环境变量,用于在pod中的容器设置环境变量。
这种方式不是很推荐,推荐将这些配置单独存储在配置文件中,这种方式将在后面介绍。
5.2.5 端口设置
本小节来介绍容器的端口设置,也就是containers的ports选项。
首先看下ports支持的子选项:
接下来,编写一个测试案例,创建pod-ports.yaml
测试
访问容器中的程序需要使用的是Podip:containerPort
2.6 资源配额
容器中的程序要运行,肯定是要占用一定资源的,比如cpu和内存等,如果不对某个容器的资源做限制,那么它就可能吃掉大量资源,导致其它容器无法运行。针对这种情况,kubernetes提供了对内存和cpu的资源进行配额的机制,这种机制主要通过resources选项实现,他有两个子选项:
- limits:用于限制运行时容器的最大占用资源,当容器占用资源超过limits时会被终止,并进行重启
- requests :用于设置容器需要的最小资源,如果环境资源不够,容器将无法启动
可以通过上面两个选项设置资源的上下限。
接下来,编写一个测试案例,创建pod-resources.yaml
在这对cpu和memory的单位做一个说明:
- cpu:core数,可以为整数或小数
- memory: 内存大小,可以使用Gi、Mi、G、M等形式
测试
5.3 Pod生命周期
我们一般将pod对象从创建至终的这段时间范围称为pod的生命周期,它主要包含下面的过程:
- pod创建过程
- 运行初始化容器(init container)过程
- 运行主容器(main container)
- 容器启动后钩子(post start)、容器终止前钩子(pre stop)
- 容器的存活性探测(liveness probe)、就绪性探测(readiness probe)
- pod终止过程
在整个生命周期中,Pod会出现5种状态(相位),分别如下:
- 挂起(Pending):apiserver已经创建了pod资源对象,但它尚未被调度完成或者仍处于下载镜像的过程中
- 运行中(Running):pod已经被调度至某节点,并且所有容器都已经被kubelet创建完成
- 成功(Succeeded):pod中的所有容器都已经成功终止并且不会被重启
- 失败(Failed):所有容器都已经终止,但至少有一个容器终止失败,即容器返回了非0值的退出状态
- 未知(Unknown):apiserver无法正常获取到pod对象的状态信息,通常由网络通信失败所导致
5.3.1 创建和终止
pod的创建过程
- 用户通过kubectl或其他api客户端提交需要创建的pod信息给apiServer
-
apiServer开始生成pod对象的信息,并将信息存入etcd,然后返回确认信息至客户端
-
apiServer开始反映etcd中的pod对象的变化,其它组件使用watch机制来跟踪检查apiServer上的变动
-
scheduler发现有新的pod对象要创建,开始为Pod分配主机并将结果信息更新至apiServer
-
node节点上的kubelet发现有pod调度过来,尝试调用docker启动容器,并将结果回送至apiServer
-
apiServer将接收到的pod状态信息存入etcd中
pod的终止过程
- 用户向apiServer发送删除pod对象的命令
- apiServcer中的pod对象信息会随着时间的推移而更新,在宽限期内(默认30s),pod被视为dead
- 将pod标记为terminating状态
- kubelet在监控到pod对象转为terminating状态的同时启动pod关闭过程
- 端点控制器监控到pod对象的关闭行为时将其从所有匹配到此端点的service资源的端点列表中移除
- 如果当前pod对象定义了preStop钩子处理器,则在其标记为terminating后即会以同步的方式启动执行
- pod对象中的容器进程收到停止信号
- 宽限期结束后,若pod中还存在仍在运行的进程,那么pod对象会收到立即终止的信号
- kubelet请求apiServer将此pod资源的宽限期设置为0从而完成删除操作,此时pod对于用户已不可见
5.3.2 初始化容器
初始化容器是在pod的主容器启动之前要运行的容器,主要是做一些主容器的前置工作,它具有两大特征:
- 初始化容器必须运行完成直至结束,若某初始化容器运行失败,那么kubernetes需要重启它直到成功完成
- 初始化容器必须按照定义的顺序执行,当且仅当前一个成功之后,后面的一个才能运行
初始化容器有很多的应用场景,下面列出的是最常见的几个:
- 提供主容器镜像中不具备的工具程序或自定义代码
- 初始化容器要先于应用容器串行启动并运行完成,因此可用于延后应用容器的启动直至其依赖的条件得到满足
接下来做一个案例,模拟下面这个需求:
假设要以主容器来运行nginx,但是要求在运行nginx之前先要能够连接上mysql和redis所在服务器
为了简化测试,事先规定好mysql(192.168.5.14)
和redis(192.168.5.15)
服务器的地址
创建pod-initcontainer.yaml
,内容如下:
测试
5.3.3 钩子函数
钩子函数能够感知自身生命周期中的事件,并在相应的时刻到来时运行用户指定的程序代码。
kubernetes在主容器的启动之后和停止之前提供了两个钩子函数:
- post start:容器创建之后执行,如果失败了会重启容器
- pre stop :容器终止之前执行,执行完成之后容器将成功终止,在其完成之前会阻塞删除容器的操作
钩子处理器支持使用下面三种方式定义动作:
- Exec命令:在容器内执行一次命令
- TCPSocket:在当前容器尝试访问指定的socket
- HTTPGet:在当前容器中向某url发起http请求
接下来,以exec方式为例,演示下钩子函数的使用,创建pod-hook-exec.yaml
文件,内容如下:
测试
5.3.4 容器探测
容器探测用于检测容器中的应用实例是否正常工作,是保障业务可用性的一种传统机制。如果经过探测,实例的状态不符合预期,那么kubernetes就会把该问题实例” 摘除 “,不承担业务流量。kubernetes提供了两种探针来实现容器探测,分别是:
- liveness probes:存活性探针,用于检测应用实例当前是否处于正常运行状态,如果不是,k8s会重启容器
- readiness probes:就绪性探针,用于检测应用实例当前是否可以接收请求,如果不能,k8s不会转发流量
livenessProbe 决定是否重启容器,readinessProbe 决定是否将请求转发给容器。
上面两种探针目前均支持三种探测方式:
- Exec命令:在容器内执行一次命令,如果命令执行的退出码为0,则认为程序正常,否则不正常
- TCPSocket:将会尝试访问一个用户容器的端口,如果能够建立这条连接,则认为程序正常,否则不正常
- HTTPGet:调用容器内Web应用的URL,如果返回的状态码在200和399之间,则认为程序正常,否则不正常
下面以liveness probes为例,做几个演示:
方式一:Exec
创建pod-liveness-exec.yaml
创建pod,观察效果
方式二:TCPSocket
创建pod-liveness-tcpsocket.yaml
创建pod,观察效果
方式三:HTTPGet
创建pod-liveness-httpget.yaml
创建pod,观察效果
至此,已经使用liveness Probe演示了三种探测方式,但是查看livenessProbe的子属性,会发现除了这三种方式,还有一些其他的配置,在这里一并解释下:
下面稍微配置两个,演示下效果即可:
5.3.5 重启策略
在上一节中,一旦容器探测出现了问题,kubernetes就会对容器所在的Pod进行重启,其实这是由pod的重启策略决定的,pod的重启策略有 3 种,分别如下:
- Always :容器失效时,自动重启该容器,这也是默认值。
- OnFailure : 容器终止运行且退出码不为0时重启
- Never : 不论状态为何,都不重启该容器
重启策略适用于pod对象中的所有容器,首次需要重启的容器,将在其需要时立即进行重启,随后再次需要重启的操作将由kubelet延迟一段时间后进行,且反复的重启操作的延迟时长以此为10s、20s、40s、80s、160s和300s,300s是最大延迟时长。
创建pod-restartpolicy.yaml
:
运行Pod测试
5.4 Pod调度
在默认情况下,一个Pod在哪个Node节点上运行,是由Scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的。但是在实际使用中,这并不满足的需求,因为很多情况下,我们想控制某些Pod到达某些节点上,那么应该怎么做呢?这就要求了解kubernetes对Pod的调度规则,kubernetes提供了四大类调度方式:
- 自动调度:运行在哪个节点上完全由Scheduler经过一系列的算法计算得出
- 定向调度:NodeName、NodeSelector
- 亲和性调度:NodeAffinity、PodAffinity、PodAntiAffinity
- 污点(容忍)调度:Taints、Toleration
5.4.1 定向调度
定向调度,指的是利用在pod上声明nodeName或者nodeSelector,以此将Pod调度到期望的node节点上。注意,这里的调度是强制的,这就意味着即使要调度的目标Node不存在,也会向上面进行调度,只不过pod运行失败而已。
NodeName
NodeName用于强制约束将Pod调度到指定的Name的Node节点上。这种方式,其实是直接跳过Scheduler的调度逻辑,直接将Pod调度到指定名称的节点。
接下来,实验一下:创建一个pod-nodename.yaml
文件
测试
NodeSelector
NodeSelector用于将pod调度到添加了指定标签的node节点上。它是通过kubernetes的label-selector机制实现的,也就是说,在pod创建之前,会由scheduler使用MatchNodeSelector调度策略进行label匹配,找出目标node,然后将pod调度到目标节点,该匹配规则是强制约束。
接下来,实验一下:
1 首先分别为node节点添加标签
2 创建一个pod-nodeselector.yaml
文件,并使用它创建Pod
测试
5.4.2 亲和性调度
上一节,介绍了两种定向调度的方式,使用起来非常方便,但是也有一定的问题,那就是如果没有满足条件的Node,那么Pod将不会被运行,即使在集群中还有可用Node列表也不行,这就限制了它的使用场景。
基于上面的问题,kubernetes还提供了一种亲和性调度(Affinity)。它在NodeSelector的基础之上的进行了扩展,可以通过配置的形式,实现优先选择满足条件的Node进行调度,如果没有,也可以调度到不满足条件的节点上,使调度更加灵活。
Affinity主要分为三类:
nodeAffinity
(node亲和性): 以node为目标,解决pod可以调度到哪些node的问题podAffinity
(pod亲和性) : 以pod为目标,解决pod可以和哪些已存在的pod部署在同一个拓扑域中的问题podAntiAffinity
(pod反亲和性) : 以pod为目标,解决pod不能和哪些已存在pod部署在同一个拓扑域中的问题
关于亲和性(反亲和性)使用场景的说明:
亲和性:如果两个应用频繁交互,那就有必要利用亲和性让两个应用的尽可能的靠近,这样可以减少因网络通信而带来的性能损耗。
反亲和性:当应用的采用多副本部署时,有必要采用反亲和性让各个应用实例打散分布在各个node上,这样可以提高服务的高可用性。
NodeAffinity
首先来看一下NodeAffinity
的可配置项:
关系符的使用说明:
requiredDuringSchedulingIgnoredDuringExecution
创建pod-nodeaffinity-required.yaml
测试
requiredDuringSchedulingIgnoredDuringExecution
创建pod-nodeaffinity-preferred.yaml
测试
NodeAffinity
规则设置的注意事项:
1 如果同时定义了nodeSelector和nodeAffinity,那么必须两个条件都得到满足,Pod才能运行在指定的Node上
2 如果nodeAffinity指定了多个nodeSelectorTerms,那么只需要其中一个能够匹配成功即可
3 如果一个nodeSelectorTerms中有多个matchExpressions ,则一个节点必须满足所有的才能匹配成功
4 如果一个pod所在的Node在Pod运行期间其标签发生了改变,不再符合该Pod的节点亲和性需求,则系统将忽略此变化
PodAffinity
PodAffinity
主要实现以运行的Pod为参照,实现让新创建的Pod跟参照pod在一个区域的功能。
首先来看一下PodAffinity
的可配置项:
topologyKey
用于指定调度时作用域,例如:
如果指定为kubernetes.io/hostname,那就是以Node节点为区分范围
如果指定为beta.kubernetes.io/os,则以Node节点的操作系统类型来区分
requiredDuringSchedulingIgnoredDuringExecution
1)首先创建一个参照Pod,pod-podaffinity-target.yaml
:
测试
2)创建pod-podaffinity-required.yaml,内容如下:
上面配置表达的意思是:新Pod必须要与拥有标签nodeenv=xxx或者nodeenv=yyy的pod在同一Node上,显然现在没有这样pod,接下来,运行测试一下。
关于PodAffinity
的 preferredDuringSchedulingIgnoredDuringExecution
,这里不再演示。
PodAntiAffinity
PodAntiAffinity
主要实现以运行的Pod为参照,让新创建的Pod跟参照pod不在一个区域中的功能。
它的配置方式和选项跟PodAffinty
是一样的,这里不再做详细解释,直接做一个测试案例。
1)继续使用上个案例中目标pod
2)创建pod-podantiaffinity-required.yaml,内容如下:
上面配置表达的意思是:新Pod必须要与拥有标签nodeenv=pro的pod不在同一Node上
测试
5.4.3 污点和容忍
污点(Taints)
前面的调度方式都是站在Pod的角度上,通过在Pod上添加属性,来确定Pod是否要调度到指定的Node上,其实我们也可以站在Node的角度上,通过在Node上添加污点属性,来决定是否允许Pod调度过来。
Node被设置上污点之后就和Pod之间存在了一种相斥的关系,进而拒绝Pod调度进来,甚至可以将已经存在的Pod驱逐出去。
污点的格式为:key=value:effect
, key和value是污点的标签,effect描述污点的作用,支持如下三个选项:
PreferNoSchedule
:kubernetes将尽量避免把Pod调度到具有该污点的Node上,除非没有其他节点可调度NoSchedule
:kubernetes将不会把Pod调度到具有该污点的Node上,但不会影响当前Node上已存在的PodNoExecute
:kubernetes将不会把Pod调度到具有该污点的Node上,同时也会将Node上已存在的Pod驱离
使用kubectl设置和去除污点的命令示例如下:
接下来,演示下污点的效果:
- 准备节点node1(为了演示效果更加明显,暂时停止node2节点)
- 为node1节点设置一个污点:
tag=heima:PreferNoSchedule
;然后创建pod1( pod1 可以 ) - 修改为node1节点设置一个污点:
tag=heima:NoSchedule
;然后创建pod2( pod1 正常 pod2 失败 ) - 修改为node1节点设置一个污点:
tag=heima:NoExecute
;然后创建pod3 ( 3个pod都失败 )
小提示:
使用kubeadm搭建的集群,默认就会给master节点添加一个污点标记,所以pod就不会调度到master节点上.
容忍(Toleration)
上面介绍了污点的作用,我们可以在node上添加污点用于拒绝pod调度上来,但是如果就是想将一个pod调度到一个有污点的node上去,这时候应该怎么做呢?这就要使用到容忍。
污点就是拒绝,容忍就是忽略,Node通过污点拒绝pod调度上去,Pod通过容忍忽略拒绝
下面先通过一个案例看下效果:
- 上一小节,已经在node1节点上打上了
NoExecute
的污点,此时pod是调度不上去的 - 本小节,可以通过给pod添加容忍,然后将其调度上去
创建pod-toleration.yaml
,内容如下